The first example of direct heterylation of calixpyrrole

O. N. Chupakhin, * G. L. Rusinov, N. A. Itsikson, and D. G. Beresnev

I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation. E-mail: chupakhin@ios.uran.ru

1,2,4-Triazine derivatives react with calixpyrrole to give stable nucleophilic addition products.

Key words: 1,2,4-triazines, 1,2,4-triazin-5(2H)-one, calixpyrrole, nucleophilic addition, σ^H -adduct.

Calix[4]pyrroles¹ have attracted particular attention because of their ability to bind not only transition metals² and neutral molecules³ but also anions.⁴ Although anions play a key role in chemistry⁵ and biology,⁶ receptors of negatively charged species remain poorly studied and the design of such compounds is topical in modern organic chemistry.

Calixpyrroles synthesized by [4+4]-cyclocondensation of pyrrole with ketones (by analogy with the first step of the Rothemund synthesis of porphyrins⁷) are accessible starting materials. However, only few examples of their functionalization have been documented to date.⁸ Of special interest in this field is modification of the C-rim with retention of the pyrrole N atoms. As for heterylation of calixpyrrole, introduction of heterocyclic fragments not only creates additional sites of complexation but also affects the molecular conformation.

Earlier, 9–11 we have developed a simple technique for one-step coupling of "monomeric" furans, pyrroles, thiophenes, and their derivatives with various azines, their *N*-oxides, and cationic forms involving nucleophilic addition to the unsubstituted C-atom of the azine system. In the present work, this methodology was developed for the modification of calix[4]pyrrole. 1,2,4-Triazine derivatives belonging to the most electrophilic heterocycles were used as azines.

1,2,4-Triazines as such do not react with calixhetarenes. Protonic or Lewis acids activate the triazine ring, and the reactions of protonated 3-methylthio- (1) and 3-amino-1,2,4-triazines (2) with calixpyrrole (3) in CF₃COOH gave adducts 4 and 5 (Scheme 1). The $^1\mathrm{H}$ NMR spectra of the reaction mixtures show signals at δ 5.3—5.5 characteristic of C(5)_{sp3}H protons.

Compound 4 was obtained in 62% yield from calix[4]pyrrole (3) and 3-methylthio-1,2,4-triazine (1) in the presence of $BF_3 \cdot Et_2O$.

Scheme 1

i. H^+ or $BF_3 \cdot Et_2O$.

R = SMe(1, 4), NH₂(2, 5).

The reaction of calixpyrrole (3) with 3-phenyl-1,2,4-triazin-5(2H)-one (6) in the presence of acetic anhydride as an activator affords monoadduct 7 (Scheme 2).

Apparently, the reaction involves addition of the pyrrole ring to N(2)-acetyl-1,2,4-triazin-5-one protonated with acetic acid, similarly to the reported reaction of 3-R-1,2,4-triazin-5(2H)-ones with benzocrown ethers. ¹²

In the ¹H NMR spectra, signals for the H(5) and H(6) atoms in compound **4** appear as a set of doublets, while

Scheme 2

signals for the CMe groups in compounds 4 and 7 appear as a set of singlets, which is due to the conformational lability of the system.

The described transformations represent first examples of modification of calixpyrrole with heterocyclic fragments. The formation of a C—C bond complements the methodology of cross-coupling in which metal complex catalysis is commonly used.

Experimental

The course of the reaction was monitored and the purity of the products obtained was checked by TLC on Sorbfil PTLC—UV plates in dichloromethane—methanol (10 : 1).

¹H NMR spectra were recorded on a Bruker DRX-400 spectrometer in DMSO-d₆ with Me₄Si as the internal standard. Elemental analysis was carried out on a Carlo Erba EA 1108 automatic analyzer. Melting points were determined on a Boetius stage and are uncorrected.

3-Amino-1,2,4-triazine was purchased from Lancaster Synthesis Ltd. **3-Methylthio-1,2,4-triazine**, ¹³ **3-phenyl-1,2,4-triazin-5(2H)-one**, ¹⁴ and **octamethylcalix[4]pyrrole** (3)⁷ were prepared according to known procedures.

4-(3-Methylthio-1,2,4-triazin-5-yl)-*meso***-octamethylcalix[4]pyrrole (4).** Boron trifluoride etherate (0.4 mL) was added to a stirred solution of 3-methylthio-1,2,4-triazine (1) (50 mg, 0.40 mmol) and calixpyrrole (3) (171 mg, 0.4 mmol) in 1 mL of MeOH. The reaction mixture was refluxed for 40 min and concentrated *in vacuo*. The residue was dissolved in water and neutralized with dilute Na₂CO₃. The precipitate that formed was filtered off and dried in air to give compound **4** (62%), m.p. >200 °C. Found (%): C, 69.23; H, 7.58; N, 17.32. C₃₂H₄₁N₇S. Calculated (%): C, 69.15; H, 7.44; N, 17.64. ¹H NMR, δ: 1.24—1.53 (set of singlets, 24 H, CH₃); 2.37 (s, 3 H, SMe); 4.42—4.46 (set of doublets, 1 H, C(5')H); 6.54—6.56 (set of doublets, 1 H, C(6')H); 7.68—8.01 (m, 6 H, calixpyrrole); 8.12 (s, 1 H, CH_{pyr}).

4-(1-Acetyl-5-oxo-3-phenyl-1,2,4-triazin-6-yl)-*meso*-**octamethylcalix[4]pyrrole** (7). A suspension of 3-phenyl-1,2,4-triazin-5(2H)-one (6) (50 mg, 0.29 mmol) and calixpyrrole (3) (124 mg, 0.29 mmol) in 3 mL of Ac₂O was refluxed for 2 h and concentrated *in vacuo*. The residue was triturated with diethyl ether to give compound 7 (42%), m.p. 159–160 °C. Found (%): C, 72.87; H, 6.91; N, 14.87. C₃₉H₄₅N₇O₂. Calculated (%): C, 72.76; H, 7.03; N, 15.23. 1 H NMR, &: 1.15–1.56 (set of singlets, 24 H, CH₃); 5.58 (br.s, 1 H, C(6')H); 7.63–7.64 (m, 8 H, Ph, calixpyrrole); 7.99–8.07 (m, 4 H, Ph, calixpyrrole); 8.31 (s, 1 H, CH_{pyr}).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 02-03-32332), the President of the Russian Federation (Program for Support of Leading Scientific Schools, Grant NSh 1766.2003.3), and the Civilian Research and Development Foundation of the United States (CRDF, Grant REC-005).

References

- 1. P. A. Gale, J. L. Sessler, and V. Kral, *Chem. Commun.*, 1998, 1.
- 2. D. Jacoby, C. Floriani, A. Chiesy-Villa, and C. Rizolly, J. Chem. Soc., Chem. Commun., 1991, 790.
- 3. W. E. Allen, P. A. Gale, S. T. Brown, V. Lynch, and J. L. Sessler, *J. Am. Chem. Soc.*, 1996, **118**, 12471.
- P. A. Gale, J. L. Sessler, V. Kral, and V. Lynch, *J. Am. Chem. Soc.*, 1996, 118, 5140.
- 5. G. Cafeo, F. H. Kohnke, G. L. La Torre, A. J. P. White, and D. J. Williams, *Chem. Commun.*, 2000, 1207.
- Y.-D. Wu, D.-F. Wang, and J. L. Sessler, J. Org. Chem., 2001, 66, 3739.
- 7. P. Rothemund and C. L. Gale, *J. Am. Chem. Soc.*, 1955, 77, 3340.
- 8. W. Sliwa, Heterocycles, 2002, 57, 16.
- O. N. Chupakhin, V. N. Charushin, and H. C. van der Plas, Nucleophilic Aromatic Substitution of Hydrogen, Academic Press, San Diego—New York, 1994, 367 pp.
- V. L. Rusinov, G. V. Zyryanov, T. L. Pilicheva, O. N. Chupakhin, and H. Neunhoeffer, *J. Heterocycl. Chem.*, 1997, 34, 1013.
- V. L. Rusinov, D. N. Kozhevnikov, E. N. Ulomskii, O. N. Chupakhin, G. G. Aleksandrov, and H. Neunhoeffer, Zh. Org. Khim., 1998, 34, 429 [Russ. J. Org. Chem., 1998, 34 (Engl. Transl.)].
- 12. G. L. Rusinov, D. G. Beresnev, N. A. Itsikson, and O. N. Chupakhin, *Heterocycles*, 2001, **55**, 1249.
- W. W. Paudler and T.-K. Chen, J. Heterocycl. Chem., 1970, 767.
- 14. V. Uchytilova, P. Fiedler, M. Prystas, and J. Gut, *Collect. Czech. Chem. Commun.*, 1971, **36**, 1955.

Received January 8, 2004; in revised form May 6, 2004